22131
120 MINUTES

1. A non-decreasing sequence of real numbers is always
A) Divergent
B) Bounded above
C) Convergent
D) Bounded below
2. Which of the following statements are true?
3. Countable union of countable sets is countable
4. Set of all ordered pairs of integers is countable
A) 1 only
B) 2 only
C) Both 1 and 2
D) Neither 1 nor 2
5. If a sequence $\left\{\mathrm{S}_{\mathrm{n}}\right\}$ of reals converges to a finite real s , then the sequence $\left\{\mathrm{S}_{\mathrm{n}}{ }^{2}\right\}$
A) Converges to s^{2}
B) Converges to s
C) Converges to $\frac{s^{2}}{2}$
D) Diverges
6. If $\sum_{n=1}^{\infty} a_{n}<\infty$, then $\sum_{k=n}^{\infty} a_{k}$ tends to:
A) zero
B) a finite quantity
C) infinity
D) None of these
7. Let $\left\langle M_{1}, \rho_{1}\right\rangle$ and $\left\langle M_{2}, \rho_{2}\right\rangle$ be metric spaces and let $f: M_{1} \rightarrow M_{2}$. Then f is continuous if and only if the inverse image of:
A) every open set is open
B) Every closed set is open
C) every open set is closed
D) Every closed set is closed
8. If $\langle M, \rho\rangle$ is a complete metric space and A is a closed subset of M . Then
A) $\quad\langle A, \rho\rangle$ is complete
B) $\quad\langle A, \rho\rangle$ need not be complete
C) $\langle A, \rho\rangle$ is compact
D) $\quad\langle A, \rho\rangle$ is totally bounded
9. Let V and W be finite dimensional vector spaces over the field F such that $\operatorname{dim}(\mathrm{V})=\operatorname{dim}(\mathrm{W})$. If T is a linear transformation from V into W , then
A) T is invertible and singular
B) $\quad \mathrm{T}$ is not invertible and singular
C) T is not invertible and non-singular
D) $\quad \mathrm{T}$ is invertible and non-singular
10. Consider the following set of vectors of R^{3} :
$\mathrm{S}_{1}=\{(3,0,-3),(4,2,-2),(-1,1,2)\}$ and
$S_{2}=\{(1,0,0),(0,1,0),(0,0,1)\}$. Then which of the following statements are true?
11. $\quad S_{1}$ contain linearly dependent vectors
12. $\quad S_{2}$ contain linearly independent vectors.
A) 1 only
B) 2 only
C) Both 1 and 2
D) Neither 1 nor 2
13. If A and B are two n-rowed square matrices, then rank $(A B)$
A) $\quad>\operatorname{rank}(\mathrm{A})+\operatorname{rank}(\mathrm{B})$
B) $\quad \geq \operatorname{rank}(\mathrm{A})+\operatorname{rank}(\mathrm{B})$
C) $\quad>\operatorname{rank}(\mathrm{A})+\operatorname{rank}(\mathrm{B})-\mathrm{n}$
D) $\geq \operatorname{rank}(\mathrm{A})+\operatorname{rank}(\mathrm{B})-\mathrm{n}$
14. Let $\mathrm{M}=\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & 3 & 9\end{array}\right]$ Then which of the following equation is correct?
A) $\quad \mathrm{M}^{3}-31 \mathrm{M}^{2}+13 \mathrm{M}+17 \mathrm{I}=0$
B) $\quad \mathrm{M}^{3}+31 \mathrm{M}^{2}-13 \mathrm{M}-17 \mathrm{I}=0$
C) $\quad \mathrm{M}^{3}-13 \mathrm{M}^{2}+31 \mathrm{M}-17 \mathrm{I}=0$
D) $M^{3}+13 M^{2}+31 M=0$
15. Which of the following is not a component of time series?
A) Secular Trend
B) Seasonal Variation
C) Regular Trend
D) Cyclical Variation
16. For any sequence $\left\{\mathrm{A}_{\mathrm{n}}\right\}$ of sets with $D_{n}=\cup_{k \geq n} A_{k}$, the value of $\lim \mathrm{D}_{\mathrm{n}}$ is:
A) $\quad \lim \mathrm{A}_{\mathrm{n}}$
B) $\quad \lim \inf A_{n}$
C) $\quad \lim \sup A_{n}$
D) empty set
17. Let $\mathrm{I}=(0,1)$, B be the borel field of subsets of I and μ be the Lebesgue Measure. For $n \geq 1$, let $A_{n}=\left(0, \frac{1}{n}\right)$. Then $\mu\left(\lim \inf A_{n}\right)$ is equal to:
A) zero
B) unity
C) infinity
D) $\frac{1}{n}$
18. Let $\mathrm{A}_{1}=\mathrm{E}_{1}, A_{2}=E_{1}^{C} E_{2}$ and $A_{3}=E_{1}^{c} E_{2}^{c} E_{3}$ be events on a probability space (Ω, A, P). Then $E_{1} \cup E_{2} \cup E_{3}$ is:
A) $\quad A_{1} \cup A_{2} \cup A_{3}$
B) $\quad A_{1} \cap A_{2} \cap A_{3}$
C) $A_{1} \Delta A_{2} \Delta A_{3}$
D) $\quad A_{1}{ }^{C} \cap A_{2}{ }^{C} \cap A_{3}{ }^{C}$
19. Pair-wise independent events $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are mutually independent when:
A) A and $B \cup C$ are independent
B) $\quad \mathrm{A}$ and $B \cap C$ are independent
C) $\quad \mathrm{A}$ and $B^{c} \cap C^{c}$ are independent
D) $\quad \mathrm{A}$ and $B^{c} \cup C^{c}$ are independent
20. For any three events A, B and C , the value of $P\left(A \cap B^{C} \mid C\right)+P(A \cap B \mid C)$ is:
A) $\quad \mathrm{P}(\mathrm{A})$
B) $\quad P(A \mid C)$
C) $\quad P(A \Delta C)$
D) $\quad P(A \cup B \mid C)$
21. For $\mathrm{P}(\mathrm{B})>0$,
A) $\quad P(A \mid B) \leq P(A)$
B) $\quad P(A \mid B)=P(A)$
C) $\quad P(A \mid B) \geq P(A)$
D) $\quad P\left(A B^{C}\right) \leq P(A)$
22. For any two independent events A and B with $\mathrm{P}(\mathrm{A})<\mathrm{P}(\mathrm{B}), P(A B)=\frac{6}{25}$ and $P(A \mid B)+P(B \mid A)=1$, the value of $\mathrm{P}(\mathrm{B})$ is:
A) $\frac{1}{5}$
B) $\frac{2}{5}$
C) $\frac{3}{5}$
D) $\frac{4}{5}$
23. If the joint distribution function of X and Y is, $F(x, y)=\left\{\begin{array}{l}1-e^{-x}-e^{-y}+e^{-(x+y)}, \quad x>0, y>0 \\ 0, \text { elsewhere }\end{array}\right.$

Then $\mathrm{P}(\mathrm{X}<\mathrm{Y})$ is
A) 0
B) $\frac{1}{4}$
C) $\frac{1}{2}$
D) $\frac{3}{4}$
20. Let X and Y be jointly distributed with pdf ,
$f(x, y)=\left\{\begin{array}{l}\frac{1+x y}{4}, \quad|x|<1,|y|<1 \\ 0 \quad, \text { elsewhere }\end{array}\right.$

Then
A) X and Y are independent
B) $\quad X^{2}$ and Y^{2} are independent
C) X and $\mathrm{X}+\mathrm{Y}$ are independent
D) None of the above
21. If $E|X|^{r}=\lambda<\infty$, then $\lim _{n \rightarrow \infty} n^{r} p(X>n)$ is:
A) λ
B) $\frac{\lambda}{1+\lambda}$
C) unity
D) zero
22. If X and Y are independent random variables, $\operatorname{Var}(\mathrm{X}-\mathrm{Y})=$
A) $\quad \operatorname{Var}(\mathrm{X})-\operatorname{Var}(\mathrm{Y})$
B) $\quad \operatorname{Var}(\mathrm{X})+\operatorname{Var}(\mathrm{Y})$
C) $\operatorname{Var}(\mathrm{XY})$
D) None of these
23. Let X be a non-negative random variable with distribution function F . Then

$$
\int_{0}^{\infty} P(X>x)=
$$

A) $E(X)$
B) $E\left(X^{2}\right)$
C) $\quad E|X|^{\frac{1}{2}}$
D) 1
24. If the raw moments of a distribution are $\mu_{r}^{\prime}=r$! for $r \geq 1$, then its characteristic function is:
A) $\quad(1+i t)^{-1}$
B) $(1-i t)^{-1}$
C) $\quad(1+i t)^{-1}(1-i t)^{-1}$
D) None of these
25. For a distribution with pmf $p(x)=2^{-x}, x=1,2, \ldots$, the value of $P\{|X-2| \leq 2\}$ is:
A) $\frac{1}{2}$
B) $<\frac{1}{2}$
C) $>\frac{1}{2}$
D) $\leq \frac{1}{2}$
26. If $\left\{\mathrm{A}_{\mathrm{n}}\right\}$ is a sequence of independent events on a probability space (Ω, A, P) with $\sum_{k=1}^{\infty} P\left(A_{k}\right)=\infty$
Then $\mathrm{P}\left(\lim \operatorname{Sup} \mathrm{A}_{\mathrm{n}}\right)$ is
A) zero
B) unity
C) $\frac{1}{2}$
D) $\frac{1}{4}$
27. Let $\left\{\mathrm{Y}_{\mathrm{n}}\right\}$ be a sequence of random variables defined on a probability space (Ω, A, P) and Y be a random variable defined on the same probability space. Then $Y_{n} \xrightarrow{d} Y \Rightarrow Y_{n} \xrightarrow{p} Y$ only when
A) $\quad\left\{\mathrm{Y}_{\mathrm{n}}\right\}$ is a sequence of independent random variables.
B) $\quad \mathrm{Y}$ is a continuous random variable
C) $\{\mathrm{Yn}\}$ is a sequence of non-negative random variables.
D) $\quad \mathrm{Y}$ is a degenerate random variable.
28. If X follows binomial $\mathrm{b}(\mathrm{n}, \mathrm{p}), E\left\{\left[\frac{X}{n}-p\right]^{2}\right\}$ is,
A) $\quad p(1-p)$
B) $\quad n p(1-p)$
C) $\quad \frac{p(1-p)}{n}$
D) $\quad n^{2} p(1-p)$
29. If X is a geometric variate with parameter p , then the value of $\mathrm{E}\{\mathrm{X}(\mathrm{X}-1)\}$ is
A) $\frac{(1-p)}{p}$
B) $\left(\frac{(1-p)}{p}\right)^{2}$
C) $\frac{(1-p)^{2}}{2 p^{2}}$
D) $\frac{2(1-p)^{2}}{p^{2}}$
30. The cumulant generating function of power series distribution with pmf

$$
p(x)= \begin{cases}\frac{a_{x} \theta^{x}}{g(\theta)} ; \quad x=0,1,2, \cdots, a_{x} \geq 0 \\ 0 & ; \text { elsewhere }\end{cases}
$$

is:
A) $\quad \log g\left(\theta e^{t}\right)$
B) $\quad \log g\left(\theta e^{t}\right)+\log g(\theta)$
C) $\quad \log g\left(\theta e^{t}\right)-\log g(\theta)$
D) $\quad \log g\left(\theta e^{t}\right)-e^{t} \log g(\theta)$
31. Let $\mathrm{X} \sim N\left(\mu, \sigma^{2}\right)$ and let $\phi($.$) denote the cumulative distribution function of \mathrm{N}(0,1)$. If $\mu^{2}=\sigma^{2}(\mu>0)$, the value of $P(X<-\mu \mid X<\mu)$
A) $1-\phi(2)$
B) $\quad 2[1-\phi(2)]$
C) $\frac{1-\phi(2)}{2}$
D) $\frac{[1-\phi(2)]^{2}}{2}$
32. The harmonic mean of beta distribution of second kind with parameters p and q is:
A) $\frac{p}{1-q}$
B) $\frac{p}{1+q}$
C) $\frac{p}{q-1}$
D) $\frac{p-1}{q}$
33. If X and Y are independent gamma variates, then $\frac{X}{Y}$ follows
A) Gamma
B) Beta type I
C) Beta Type II
D) Cauchy
34. If $X_{1}, X_{2}, \ldots, X_{n}$ are independent exponential variates, each with parameter θ, then $\operatorname{Min}\left\{X_{1}\right.$, $\left.X_{2}, \ldots, X_{n}\right\}$ has
A) exponential distribution with parameter $n \theta$
B) exponential distribution with parameter θ^{n}
C) exponential distribution with parameter θ
D) gamma distribution with parameter nand θ
35. Which of the following statement is true?
A) Standard Laplace distribution is leptokurtic, but standard logistics is platykurtic
B) Standard Laplace distribution is platykurtic, but standard logistics is leptokurtic
C) Both Standard Laplace distribution and standard logistics are leptokurtic
D) Both Standard Laplace distribution and standard logistics are platykurtic
36. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be a random sample from an exponential population with probability density function
$f(x)= \begin{cases}e^{-x} & , x \geq 0 \\ 0 & ; \text { elsewhere }\end{cases}$
Then the cumulative distribution function of $\operatorname{Max}\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$ is
A) $1-e^{-n x}$
B) $\left(1-e^{-x}\right)^{n}$
C) $\quad 1-e^{-x}$
D) $1-e^{\frac{-x}{n}}$
37. Variance of student's t distribution with n degrees of freedom exists when
A) $n>1$
B) $n \geq 1$
C) $n>2$
D) $n \geq 2$
38. Beta distribution of first kind with parameter m and n is bimodal if
A) m $<1, \mathrm{n}<1$
B) $\mathrm{m}>1, \mathrm{n}>1$
C) $\mathrm{m}<1, \mathrm{n}>1$
D) $\mathrm{m}>1, \mathrm{n}<1$
39. In case of F distribution:
A) \quad Mean <1, Mode <1
B) Mean >1, Mode <1
C) Mean <1, Mode >1
D) Mean >1, Mode >1
40. (X,Y) possess bivariate normal distribution if and only if:
A) $\quad \mathrm{X}$ and Y are normal variates
B) $\quad \mathrm{X}$ and Y are independent normal variates
C) $\quad \mathrm{X}$ and Y are dependent normal variates
D) any linear combination of X and Y is a normal variate.
41. If X and Y are standard normal variates with correlation coefficient ρ, then the correlation coefficient between $X_{1}{ }^{2}$ and $X_{2}{ }^{2}$ is
A) $\quad \rho$
B) $\quad \rho^{2}$
C) $2 \rho^{2}$
D) $\quad \frac{\rho^{2}}{2}$
42. A sufficient statistics is minimal if and only if it is a:
A) minimum sufficient statistics in a sequence of sufficient statistics
B) a function of every other sufficient statistics
C) a function of UMVU estimators
D) all the above
43. An estimator T , based on a sample of size n is considered to be the best estimator of θ if:
A) $\quad \mathrm{P}\left\{\left|\mathrm{T}_{\mathrm{n}}-\theta\right|<\varepsilon\right\} \geq \mathrm{P}\left\{\left|T_{n^{*}}^{*} \theta\right|<\varepsilon\right\}$
B) $\quad \mathrm{P}\left\{\left|\mathrm{T}_{\mathrm{n}}-\theta\right|>\varepsilon\right\} \geq \mathrm{P}\left\{\left|T_{n^{*}}^{*} \theta\right|>\varepsilon\right\}$
C) $\quad \mathrm{P}\left\{\left|\mathrm{T}_{\mathrm{n}}-\theta\right|<\varepsilon\right\}=\mathrm{P}\left\{\left|T_{n}^{*}-\theta \quad\right|<\varepsilon\right\}$ for all θ
D) None of the above
44. Let M be a sufficient statistic for θ and T be another statistic whose distribution is independent of θ then:
A) $\quad \mathrm{M}$ and T are both sufficient for θ
B) $\quad \mathrm{M}$ and T are independent if M is complete
C) $\quad \mathrm{M}$ and T are independent if T is complete
D) $\quad \mathrm{M}$ and T are independent if T is minimal
45. Area of the critical region depends on:
A) size of type 1 error
B) size of type II error
C) value of the statistic
D) number of observations
46. The decision criteria in SPRT depends on the functions of:
A) type I error
B) type II error
C) type I and II errors
D) none of the two types of errors
47. The Mann-Whitney U test is preferred to a t-test when:
A) The assumption of normality is not met
B) Sample sizes are small
C) Data are paired
D) Samples are dependent
48. Let X follows Bernoulli distribution with parameter θ, then which statistic is sufficient for θ based on the sample size 2 ?
A) $\quad \mathrm{T}=\mathrm{X}_{1}+2 \mathrm{X}_{2} \quad \mathrm{~T}=2 \mathrm{X}_{1}+2 \mathrm{X}_{2}$
C) $\quad \mathrm{T}=2 \mathrm{X}_{1}+\mathrm{X}_{2}$
D) $\quad T=2 X_{1}+4 X_{2}$
49. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be a random sample from $\mathrm{N}\left(0, \sigma^{2}\right)$. Consider likelihood ratio test for which the critical region is given as $\Sigma X_{i}^{2}>K$. The alternative hypothesis against $\mathrm{H}_{0}: \sigma=\sigma_{0}$ which leads to an uniformly most powerful test is:
A) $\quad \sigma \neq \sigma_{0}$
B) $\quad \sigma^{2}=\sigma_{0}$
C) $\quad \sigma<\sigma_{0}$
D) $\quad \sigma>\sigma_{0}$
50. Consider the model $Y_{i}=i \beta+\varepsilon_{i}, i=1,2,3$ where $\varepsilon_{1}, \varepsilon_{2}$ and ε_{3} are independent with mean zero and variance $\sigma^{2}, 2 \sigma^{2}, 3 \sigma^{2}$ respectively. Which of the following is the best linear unbiased estimate of β ?
A) $\frac{11\left(y_{1}+y_{2}+y_{2}\right)}{6}$
B) $\quad \frac{6}{11}\left(y_{1}+\frac{y_{2}}{2}+\frac{y_{2}}{3}\right)$
C) $\frac{y_{1}+y_{2}+y_{2}}{6}$
D) $\frac{3 y_{1}+2 y_{3}+y_{8}}{10}$
51. Consider the problem of testing $\mathrm{H}_{0}: \mathrm{X} \sim$ Normal with mean 0 and variance $\frac{1}{2}$ against $\mathrm{H}_{1}: \mathrm{X} \sim \operatorname{Cauchy}(0,1)$. Then for testing H_{0} against H_{1}, the most powerful size α test
A) does not exist
B) rejects Ho if and only if $|x|>c_{2}$ where c_{2} is such that the test is of size α
C) rejects Ho if and only if $|x|<c_{3}$ where c_{3} is such that the test is of size α
D) rejects Ho if and only if $|\mathrm{x}|<\mathrm{c}_{4}$ or $|\mathrm{x}|>\mathrm{c}_{5}, \mathrm{c}_{4}<\mathrm{c}_{5}$ where c_{4} and c_{5} are such that the test is of size α
52. $X_{1}, X_{2}, \ldots, X_{n}$ are independently and identically distributed random variables, which follow $\mathrm{b}(1, \mathrm{p})$. To test $\mathrm{H}_{0}: \mathrm{p}=\frac{1}{2}$ vs $\mathrm{H}_{1}: \mathrm{p}=\frac{3}{4}$, with size $\alpha=0.01$, consider the test

$$
\phi=\left\{\begin{array}{l}
1, \text { if } \sum_{i=0}^{n} X_{i}>\varepsilon_{n} \\
0, \text { otherwise }
\end{array}\right.
$$

Then, which of the following statement is true
A) As $n \rightarrow \infty$ power of the test converges to $\frac{1}{4}$
B) As $n \rightarrow \infty$ power of the test converges to $\frac{1}{2}$
C) As $n \rightarrow \infty$ power of the test converges to $\frac{3}{4}$
D) As $n \rightarrow \infty$ power of the test converges to 1
53. The value of statistic χ^{2} is zero if and only if:
A) $\quad O_{i}=E_{i}$
B) $\quad \Sigma_{i} O_{i}=\Sigma_{i} E_{i}$
C) $\quad E_{i}$ is large
D) all the above
54. In a clinical trial n randomly chosen persons were enrolled to examine whether two different skin creams, A and B, have different effects on the human body. Cream A was applied to one of the randomly chosen arms of each person, cream B to the other arm. Which statistical test is to be used to examine difference? Assume that the response measured is a continuous variable.
A) Two-sample t-test if normality can be assumed.
B) Paired t-test if normality can be assumed.
C) Two-sample Kolmogorov-Smirnov test.
D) Test for randomness.
55. Which of the following is true in statistical testing hypothesis problem?
A) $\quad \mathrm{P}[$ type I error $]+\mathrm{P}$ [type II error $]=1$
B) level of significance of a test decreases as sample size increases
C) level of significance of a test increases as sample size increases
D) size of a test is always less than or equal to level of significance
56. Suppose we subdivide the population into at least two subgroups and then draw a random sample from each of the groups. This type of sampling scheme is called
A) Two stage sampling
B) Cluster sampling
C) Stratified sampling
D) Multistage sampling
57. In SRSWOR of n units from a population of N units which are numbered, the probability that the $(\mathrm{N}-1)^{\text {th }}$ and Nth population units are included in the sample is
A) $\frac{\mathrm{N}(\mathrm{N}-1)}{\mathrm{N}^{2}}$
B) $\frac{n(n-1)}{N(N-1)}$
C) $\quad \frac{1}{\binom{n}{2}}$
D) $\quad \frac{1}{\binom{\text { I }}{2}}$
58. A population of 60 units is split into 3 strata of equal sizes. The within stratum variances of the variable of interest Y are $\sigma^{2}, 4 \sigma^{2}, 9 \sigma^{2}$ for stratum 1, 2 and 3 respectively. A stratified sample of 18 units is to be drawn, the optimal allocation of the sample from strat 1,2,3 are respectively.
A) $1,4,9$
B) $3,6,9$
C) $3,7,9$
D) $2,5,11$
59. With usual notation finite population correction is:
A) $\frac{N-1}{n}$
B) $\frac{N-n}{n}$
C) $\frac{N-n}{N}$
D) $1-\frac{1}{n}$
60. Ratio estimator of population mean is unbiased if the sampling is done according to
A) SRSWR
B) PPSWR
C) PPSWOR
D) Systematic Sampling
61. Variance of the regression estimate is smaller than that of the mean per unit if
A) Correlation between variables is 0
B) Correlation between variables is not equal to 0
C) Correlation between variables is equal to ratio of coefficient of variation
D) Correlation between variables is greater than ratio of coefficient of variation
62. Consider the following statements on PPS sampling

1. If the sample size n is drawn with probability proportional to sizes X_{i} and with replacement, then the probability of selecting the $i^{\text {th }}$ unit, $i=1,2, \cdots---N$ at any draw is $\frac{X_{i}}{N X}$
2. An unbiased estimator of the population total under PPSWR is $\bar{Y}=\frac{X}{n} \sum_{i=1}^{n} \frac{y_{i}}{x_{i}}$

Now state which of the following is correct?
A) 1 is true and 2 is false
B) $\quad 2$ is true and 1 is false
C) Both 1and 2 are true
D) Both 1 and 2 are false
63. In a connected block design with v treatments and b blocks, the rank of the C matrix is:
A) $\quad \mathrm{v}-1$
B) $<v$
C) 1
D) $\quad b-1$
64. In the 2^{4} factorial design, which of the factors or interactions are confounded with the following blocks.
Block 1: $0000 \quad 1001 \quad 1010 \quad 1100 \quad 0011 \quad 0101 \quad 0110 \quad 1111$
Block 2: $1000 \quad 0001 \quad 0010 \quad 0100 \quad 10111101 \quad 1110 \quad 0111$
A) AB
B) AC
C) ABC
D) ABCD
65. A BIBD Design with parameters ($\mathrm{v}, \mathrm{b}, \mathrm{k}, \mathrm{r}, \lambda$) is:
A) Connected, balanced and orthogonal
B) Connected, not balanced and orthogonal
C) Connected, balanced and non-orthogonal
D) Not connected, balanced and non-orthogonal
66. In a RBD of 4 treatments and 3 blocks the degrees of freedom of the residual sum of squares (Error sum of squares) is
A) 3
B) 4
C) 5
D) 6
67. If the number of levels of each factor in an experiment is different then the experiment is called
A) Factorial
B) Assymetrical
C) incomplete
D) None of these
68. Partial confounding is defined as
A) The same set of treatments are confounded in all replications
B) The different set of treatments are confounded in different replications
C) Some treatments are confounded and some are not
D) None of the above.
69. If $X \sim N(\mathbf{0}, \Sigma)$, then the distribution of $X^{\prime} \Sigma^{-1} X$ is
A) $\quad N_{p}(\mathbf{0}, \Sigma)$
B) Chi-square with 1 degree of freedom
C) Chi-square with p degrees of freedom
D) Chi-square with p-1 degrees of freedom
70. Wishart distribution is a multivariate analogue of
A) Exponential distribution
B) Chi-square distribution
C) t-distribution
D) F-distribution
71. If $\left.\mathrm{X} \sim N_{P}(\mathbf{0}, \Sigma)\right)$, then $\mathrm{X}^{\prime} A X$ and $l^{\prime} X$ are independent if and only if
A) $\quad A \Sigma l \neq 0$
B) $\quad A \Sigma^{-1} l=0$
C) $A \Sigma^{-1} l \neq 0$
D) $A \Sigma l=0$
72. If $\mathrm{X} \sim N(\boldsymbol{\mu}, \Sigma)$, then $E\left(\mathrm{X}^{\prime} A X\right)$ is:
A) $\quad \operatorname{tr}\left(A \Sigma+\boldsymbol{\mu}^{\prime} A \boldsymbol{\mu}\right)$
B) $\quad \operatorname{tr}\left(A+\mu^{\prime} \boldsymbol{\mu}\right)$
C) $\quad \operatorname{tr}\left(A+\boldsymbol{\mu}^{\prime} A \boldsymbol{\mu}\right)$
D) $\quad \operatorname{tr}\left(A \Sigma+\mu^{\prime} \boldsymbol{\mu}\right)$
73. If $\mathrm{R}_{1.23}=0$, then the partial correlations involving X_{1} are always
A) $>\frac{1}{2}$
B) $<\frac{1}{2}$
C) zero
D) unity
74. Which of the following statements are true?

1. Hotelling's T^{2} statistic is not invariant under linear transformation.
2. The vector random variable \underline{X} follows multivariate normal distribution if and only if every components of \underline{X} are univariate normal
A) 1 only
B) 2 only
C) both 1 and 2
D) neither 1 nor 2
3. Consider a random walk over $\{0,1, \ldots, \mathrm{~m}\}$ with absorbing barriers and let $\mathrm{P}=\left(\left(\mathrm{p}_{\mathrm{ij}}\right)\right)$ be transition probability matrix. Then which of the following is true?
A) $\mathrm{p}_{00}>\mathrm{p}_{\mathrm{mm}}$
B) $\mathrm{p}_{00}<\mathrm{p}_{\mathrm{mm}}$
C) $\quad \mathrm{p}_{00} \neq \mathrm{p}_{\mathrm{mm}}$
D) None of these
4. If all the states of a Markov chain communicate with each other, then the chain is
A) irreducible
B) not necessarily irreducible
C) reducible
D) not necessarily reducible
5. Let $\left\{\mathrm{Z}_{\mathrm{j}}\right\}$ be a sequence of independent and identically distributed random variables with mean zero and let $\quad X_{n}=\sum_{j=1}^{n} Z_{j}$.Then $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ is a
A) Markov process
B) Weiner process
C) Stationary process
D) Martingale process
6. Let $\{X(t), t \geq 0\}$ be a process with stationary independent increments, with $X(0)=0$ and $\operatorname{Var}(X(1))=\sigma^{2}<\infty$. Then, for any $\mathrm{t}>\mathrm{s}, \operatorname{Var}(\mathrm{X}(\mathrm{t})-\mathrm{X}(\mathrm{s}))$ is
A) σ^{2}
B) $\sigma^{2} t$
C) $\quad \sigma^{2}(t-s)$
D) $\quad \sigma^{2} \min \{t, s\}$
7. Let T_{n} be the time of the $\mathrm{n}^{\text {th }}$ event of a Poisson process $\{X(t), t \geq 0\}$ with parameter λ and let one event has occurred in the time interval $(0, \mathrm{t})$. Then, for any $s \leq t$, $P\left\{T_{1} \leq s \mid X(t)=1\right\}$ is
A) $\frac{s}{t}$
B) $s t$
C) $\frac{s t}{s+1}$
D) $\frac{s t}{t+1}$
8. Fisher's ideal formula for index numbers does not satisfy
A) Time reversal test
B) Factor reversal test
C) Unit test
D) Circular test
